导读:本文包含了递推算法论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:张量,算法,矩阵,轨道,微积分,广义,节点。
递推算法论文文献综述
温渊,白沐炎,易灵,陈长春,方华[1](2019)在《低轨卫星高精度轨道递推算法研究》一文中研究指出卫星的轨道递推算法是星上程控、姿态确定的基础。高分五号卫星具有高图像定位精度,高天线指向精度需求,对卫星轨道递推的精度提出了较高要求。为满足该要求,提出了根据地面上注的轨道参数结合GPS输出的瞬时轨道参数进行高精度轨道递推的方案。以星上GPS轨道参数遥测作为输入,进行了不同GPS输出工况下的递推误差分析,并与利用地面轨道上注的轨道参数进行外推的结果进行了对比。结果表明:所提出的轨道递推算法具有精度高,计算量小,可靠性高的特点,已成功应用于高分五号卫星,可为其他高精度观测卫星的轨道递推方案提供设计参考。(本文来源于《上海航天》期刊2019年S2期)
卓丽云,顾立志[2](2019)在《基于矩阵和线性递推算法的自动装配工艺顺序WMS数学模型》一文中研究指出为了获得产品的最优自动装配顺序,根据自动装配原理提出装配零件集和装配约束件的概念,运用矩阵算法和线性递推算法构建装配顺序的WMS数学模型。依据产品装配结构特征和装配约束件约束特征分别构建装配关联矩阵和装配约束矩阵,进而获得理论装配工艺数和顺序序列。运用层次分析法确定装配因素的影响权重系数和对各影响因素值进行无量纲化处理,获得产品的装配顺序评价模型。运用此模型即可便捷地确定产品的最优自动装配顺序。以一自动-手动水龙头装配为例进行实证研究。结果表明上述理论方法可行和实用。(本文来源于《制造技术与机床》期刊2019年01期)
刘峰[3](2018)在《偏差仿真中排列组合单步递推算法》一文中研究指出飞行器研制过程中,通常用六自由度仿真试验考核飞行器控制系统的性能,通过遍历飞行器偏差模型前几项的极限工况,评估偏差项对系统性能的影响程度,找出影响的主要因素。当偏差项有序关联时,需要通过选排列方式遍历偏差模型的前几项,当偏差项相互独立时,只需要通过组合方式遍历偏差模型的前几项。结果表明:提出多种排列组合遍历算法,能够实现不同遍历的相互嵌套,适合于复杂离散优化问题的求解,其中单步递推的遍历算法运算量更小。(本文来源于《导弹与航天运载技术》期刊2018年05期)
朱新春[4](2018)在《递推算法与先天卦图——邵雍真的知道二进制吗?》一文中研究指出由于先天卦图的排序符合二进制法则,有人认为先天易创立者(邵雍)一定知道二进制,并用诸六十四卦图排列。对此有人则持否定观点,并进而否定先天易的二进制内涵。通过分析卦系生成理论和先天卦图的推演过程,并将之与《太玄经》玄图和古印度的梵文韵律表的形成方法进行对比,就会发现,先天卦图实际上就是运用递推算法,逐级推演而成,并非按二进制法则对之进行重新排列。这并不能否定先天易的二进制内涵,但其二进制只是朱熹所谓的"圣人之蕴"。(本文来源于《自然辩证法研究》期刊2018年08期)
顾传青,黄逸铮,陈之兵[5](2019)在《广义逆张量Padé逼近的连分式递推算法》一文中研究指出张量指数函数已经广泛应用于控制论、图像处理和各个工程领域.鉴于此,在矩阵广义逆的基础上,首次在张量内积空间上定义一种有效的张量广义逆,从而构造张量Padé逼近的一种连分式算法.利用张量t-积成功计算张量的幂,由此递推地给出张量指数函数的幂级数展开式.在前面两个工作的基础上,利用设计的连分式算法逼近张量指数函数,其特点在于,该算法可以编程实现递推计算,而且在计算过程中不必计算张量的乘积,也不必计算张量的逆.给出的两个张量指数函数的数值实验表明,将连分式算法与目前通常使用的截断法进行比较,在不降低逼近阶的条件下,所提出算法是有效的.如果张量的维数较大,基于张量广义逆的连分式算法仍然具有一定优势.(本文来源于《控制与决策》期刊2019年08期)
白鹭,薛定宇[6](2018)在《分数阶微积分的高精度递推算法》一文中研究指出设计了一种计算分数阶微积分的高精度数值算法,提出了一种构造生成函数的简便方法.分析了基于快速Fourier变换的算法,该算法误差较大的原因是应用了不准确的生成函数的系数,而且没有考虑原函数的非零初值条件对计算精度的影响.新算法应用递推公式计算生成函数的系数,并将原函数分解成零初值条件和非零初值条件两部分,分别计算它们的分数阶微分和积分,这样可以减小计算误差.误差分析和计算实例证明新算法具有很高的计算精度.(本文来源于《东北大学学报(自然科学版)》期刊2018年04期)
潘宝珍,王静静[7](2017)在《向量值Padé-型逼近的递推算法在求解线性方程组上的应用》一文中研究指出借助正交多项式,构造了向量值Padé-型逼近的一种有效的叁项递推公式,并利用该公式得到了求解高阶线性方程组的一个有用的算法.对该算法的收敛速度和控制迭代步骤进行了讨论,最后用数值例子加以说明.(本文来源于《应用数学与计算数学学报》期刊2017年04期)
许兆凤[8](2017)在《基于改进单向递推算法的发电机故障信号分析》一文中研究指出发电机是电力系统中重要的电气设备,对其故障的检测有着重要的意义。本文提出了一种快速单向递推算法,能够迅速捕获设备非正常信息,在设备故障早期阶段就能发出预报,对提高设备运行可靠性有着重要的意义。并通过仿真结果,不仅验证了该方法的可行性,而且也说明了此方法精度更高,计算量更少。(本文来源于《数码设计》期刊2017年04期)
李伟[9](2017)在《计算思维在高中信息科技课堂中的教学实践——以《算法与程序设计——递推算法》一课为例》一文中研究指出与传统的教学模式相比较,基于计算思维的教学模式在培养学生自我建构知识以及创新思维能力方面有较大的优势,不仅可以提高学生的学习效率,还可以培养他们的计算思维能力。在高中信息技术学科核心素养中,计算思维作为重要的组成部分,其定义是:个体在运用计算机科学领域的思想方法形成问题解决方案的过程中产生的一系列思维活动。然而在实际教学中,教师会发现,信息科技学科的属性越来越缺失,信息科技课程中"唯工具"(本文来源于《中国信息技术教育》期刊2017年19期)
康重庆,程耀华,孙彦龙,张宁,孟珺遐[10](2017)在《电力系统碳排放流的递推算法》一文中研究指出碳排放流理论为电力系统中碳排放责任的分摊提供了新的视角。基于节点碳势计算中的邻接特性,文中提出了电力系统碳排放流的递推算法,论述了递推算法的基本原理及计算过程。然后,分析对比了递推算法和已有的直接算法的特点和适用性,并进一步将二者结合,提出了碳排放流的协同计算流程。最后,以简单电力系统为分析对象,具体说明了所提递推算法的递推过程。并以IEEE 24节点系统和挪威2 383节点系统为例,测试了递推算法在实际电力系统应用中的有效性。(本文来源于《电力系统自动化》期刊2017年18期)
递推算法论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
为了获得产品的最优自动装配顺序,根据自动装配原理提出装配零件集和装配约束件的概念,运用矩阵算法和线性递推算法构建装配顺序的WMS数学模型。依据产品装配结构特征和装配约束件约束特征分别构建装配关联矩阵和装配约束矩阵,进而获得理论装配工艺数和顺序序列。运用层次分析法确定装配因素的影响权重系数和对各影响因素值进行无量纲化处理,获得产品的装配顺序评价模型。运用此模型即可便捷地确定产品的最优自动装配顺序。以一自动-手动水龙头装配为例进行实证研究。结果表明上述理论方法可行和实用。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
递推算法论文参考文献
[1].温渊,白沐炎,易灵,陈长春,方华.低轨卫星高精度轨道递推算法研究[J].上海航天.2019
[2].卓丽云,顾立志.基于矩阵和线性递推算法的自动装配工艺顺序WMS数学模型[J].制造技术与机床.2019
[3].刘峰.偏差仿真中排列组合单步递推算法[J].导弹与航天运载技术.2018
[4].朱新春.递推算法与先天卦图——邵雍真的知道二进制吗?[J].自然辩证法研究.2018
[5].顾传青,黄逸铮,陈之兵.广义逆张量Padé逼近的连分式递推算法[J].控制与决策.2019
[6].白鹭,薛定宇.分数阶微积分的高精度递推算法[J].东北大学学报(自然科学版).2018
[7].潘宝珍,王静静.向量值Padé-型逼近的递推算法在求解线性方程组上的应用[J].应用数学与计算数学学报.2017
[8].许兆凤.基于改进单向递推算法的发电机故障信号分析[J].数码设计.2017
[9].李伟.计算思维在高中信息科技课堂中的教学实践——以《算法与程序设计——递推算法》一课为例[J].中国信息技术教育.2017
[10].康重庆,程耀华,孙彦龙,张宁,孟珺遐.电力系统碳排放流的递推算法[J].电力系统自动化.2017