纳米纤维论文_张飒,王建江,赵芳,刘嘉玮

导读:本文包含了纳米纤维论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:纳米,纺丝,纤维,静电,流电,吡咯,负极。

纳米纤维论文文献综述

张飒,王建江,赵芳,刘嘉玮[1](2019)在《电纺Co掺杂碳纳米纤维的制备及其吸波性能》一文中研究指出采用静电纺丝法和后续的热处理工艺制备不同浓度Co纳米粒子掺杂的碳纳米纤维。通过差热-热重(DSC-TGA)仪、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、矢量网络分析仪(VNA)对复合碳纳米纤维的热稳定性、物相、微观结构、电磁参数进行表征,并对其微波吸收性能进行研究。结果表明:当炭化温度为800℃时,复合纳米纤维结晶度适中,无定形碳部分转化为石墨相碳,CoAc_2全部被炭化还原为面心立方结构的金属Co纳米粒子,且纤维形貌完整,有串珠状结构存在于纤维网络之间;掺杂后碳纤维电磁性能得到明显改善,当掺杂量为7%(质量分数),涂层厚度为1.5mm时,有效吸收带宽达到最大,为4.5GHz,相比于纯碳纳米纤维,吸波性能得到显着提升。(本文来源于《材料工程》期刊2019年12期)

刘江涛,姜志浩,张传玲[2](2019)在《镍铁合金纳米颗粒嵌入氮掺杂碳纳米纤维高活性析氧催化剂的研究》一文中研究指出采用静电纺丝法和后煅烧法制备了一种镍铁合金纳米颗粒嵌入氮掺杂碳纳米纤维的催化剂材料。通过SEM、TEM、XRD和XPS等对催化剂的形貌和组成进行分析与表征。进一步通过电化学工作站的测试证明催化剂NiFe-N-CNF-2具有优越的OER性能(10 mA/cm~2的电流密度下过电势为0. 4 V),甚至可以媲美商业RuO_2催化剂。该方法为制备低成本和高活性析氧催化剂提供了新方法。(本文来源于《现代化工》期刊2019年12期)

李伟刚,凤权,胡金燕,杨李燏,陈欢欢[3](2019)在《再生纤维素基复合纳米纤维膜的制备及其应用》一文中研究指出采用静电纺丝技术和化学改性制备聚氨酯(PU)-偕胺肟聚丙烯腈(AOPAN)-再生纤维素(RC)复合纳米纤维膜,将其作为分离膜构建动态分离系统,并测定其对Fe~(3+)的动态吸附性能。结果表明,在液柱高度8 cm、膜层数5、Fe~(3+)的质量浓度5 mg/L的条件下,动态吸附率最高可达100%,溶液体积流量为4.60 m L/min;当Fe~(3+)的质量浓度为300 mg/L时,动态吸附数据符合Thomas和Yoon-Nelson动态吸附模型,平衡吸附量分别为117.0 mg/g和113.3mg/g。通过对复合纳米纤维膜的扫描电镜、红外光谱及拉伸力学测试表征发现,加入PU后,其断裂强力和断裂伸长率均有所提升,同时具有良好的力学性能和稳定的微观形态。(本文来源于《水处理技术》期刊2019年12期)

杨晓兵,赵磊,隋旭磊,孟令辉,王振波[4](2019)在《基于磷钨酸功能化纳米纤维的超高质子/钒选择性的聚苯并咪唑膜在全钒液流电池中的应用》一文中研究指出质子交换膜是全钒液流电池的关键组件,其质子/钒选择性对于单电池的性能发挥至关重要。商用的全氟磺酸(Nafion)膜具有优异的质子传导率和化学耐受性,但是过于严重的钒离子渗透率阻碍了其工业化应用。本文中,以稠密的碳氢聚合物聚苯并咪唑(PBI)为基体材料,通过磷钨酸(PWA)的掺杂赋予其适当的质子传导能力,而其本征的高阻钒性则有助于高质子/选择性的获得。考虑到PWA水溶性较强易于从水中流失的缺陷,选用了有机的聚合物纳米凯夫拉纤维(NKFs)作为PWA的锚定剂,实现了良好的锚定效果,同时也解决了无机锚定剂与聚合物基体相容性差的问题。利用扫描电镜(SEM)、傅里叶变换红外(FT-IR)光谱表征了PWA功能化NKFs的形成,紫外-可见光(UV-Vis)光谱评估了NKFs对PWA的锚定稳定性,并对复合膜进行了吸水率(WU)、溶胀比(SR)、离子交换容量(IEC)、质子传导率、钒离子渗透率及选择性等测试表征了其基本性能。同时,在40–100 mA·cm~(–2)下对以复合膜及重铸全氟磺酸(recast Nafion)膜组装的单电池进行了充放电、自放电及循环性能测试。结果表明,制备的复合膜体现出远超recast Nafion膜的质子/钒选择性,且以复合膜组装的单电池表现出更高的库仑效率和显着下降的自放电速率。(本文来源于《物理化学学报》期刊2019年12期)

吕婷婷,安瑛,李好义,刘宇健,焦志伟[5](2019)在《静电纺动物蛋白纳米纤维研究进展》一文中研究指出为拓展静电纺纳米纤维的应用领域,拓宽静电纺丝工艺的材料来源,对国内外近期静电纺动物蛋白纳米纤维的研究进展进行了综述。针对目前静电纺丝工艺中有机溶剂使蛋白质变性的问题,介绍了几种取代有机溶剂的方法,并对这些方法的优缺点进行对比,分析认为水溶性聚合物代替有机溶剂的方法更有利于蛋白纳米纤维在生物医药领域应用;讨论了交联改性及共混改性对静电纺动物蛋白纳米纤维力学性能的影响,对静电纺胶原蛋白纳米纤维在生物医药领域的应用进行了总结;最后针对利用静电纺丝技术制备动物蛋白纳米纤维亟待解决的问题以及未来的发展方向进行了展望。(本文来源于《纺织学报》期刊2019年12期)

谢超,洪国辉,赵丽娜,杨伟强,王继库[6](2019)在《石墨烯/聚吡咯纳米纤维超级电容器电极材料的制备及其电化学性能》一文中研究指出超级电容器因其具有较高的循环稳定性和较好的能量密度而成为储能器件中的研究热点,其电极材料及制备方法是决定超级电容器电化学性能的关键因素。本文以聚环氧乙烷-聚环氧丙烷-聚环氧乙烷叁嵌段共聚物(P123)为软模板,通过一步原位聚合法成功地制备了石墨烯/聚吡咯纳米纤维(GR/PPy NF)复合超级电容器电极材料。通过X射线衍射(XRD),X射线光电子能谱(XPS)、透射电子显微镜(TEM)和傅里叶变换红外光谱仪(FT-IR)等对复合材料的结构和形态进行了系统的表征。利用电化学方法对GR/PPy NF复合电极材料的电化学性能进行了系统的分析。结果表明,在电流密度0. 5 A/g下,纳米复合材料的比电容量高达969. 5 F/g,在充放电600圈之后,仍可保留初始比电容的88%,展示了良好的电容性能及循环稳定性。GR/PPy NF制备简单,性能优异,是一种很有前途的能量转换/存储材料。(本文来源于《应用化学》期刊2019年12期)

凡启光,庄建国[7](2019)在《纳米纤维锂电池负极材料的制备及性能分析》一文中研究指出探讨一种用于高性能锂离子电池负极材料的制备及性能。通过配制乙酰丙酮铁的聚丙烯腈/聚甲基丙烯酸甲酯(PAN/PMMA)混合溶液用作前驱液,利用静电纺丝技术制备多孔碳/四氧化叁铁纳米纤维。结果表明:多孔碳/四氧化叁铁纳米纤维呈现多孔的结构和凹凸不平的形貌,Fe_3O_4纳米粒子均匀地镶嵌在碳基质中;在电流密度为100 mA/g时,多孔碳/四氧化叁铁材料电极首次放电比容量高达1 380 mAh/g,经过100次循环后,稳定比容量为641 mAh/g;这种电极材料表现出优良的倍率性能,在电流密度为5 000 mA/g时,其可逆比容量仍维持在330 mAh/g。认为:这种多孔碳/四氧化叁铁复合物作为高性能锂电池负极材料具有广泛的应用前景。(本文来源于《棉纺织技术》期刊2019年12期)

[8](2019)在《基于国产芳砜纶的复合纳米纤维膜研发成功》一文中研究指出随着工业的快速发展,钢铁、发电厂、化学工业和车辆等排放的空气污染物已经严重影响到了人体健康。然而,实现高温污染源头的高效除尘过滤是非常困难的,因为过滤材料既要承受高温又要经受化学腐蚀,而传统的基于非织造纤维的过滤材料(例如玻璃纤维、熔喷纤维和纺粘纤维)捕获细小颗粒物的性能差强人意,不仅面临着巨大的压降阻力,且热稳定性及化学稳定性不佳。针对特定高温污染物源头废气排放问题,青岛大学宁新教授团队基于国产芳砜纶(聚砜酰胺)设计了一种新型的聚砜酰胺/聚丙烯腈-勃母石(PSA/PAN-B)复(本文来源于《纺织科学研究》期刊2019年12期)

崔景淼[9](2019)在《金属氧化物纳米纤维晶体管的制备及性能》一文中研究指出纳米材料的形貌结构以及理化性能相对来说都比较特殊,各方面的化学特性也都比较特殊,所以在当前国家对于研究纳米技术比较重视。目前最简单的一种制备纳米纤维晶体管的方式就是静电纺丝技术,该项技术产量比较高,而且还可以将操作成本降低,在各个领域当中应用的都比较广泛。(本文来源于《农家参谋》期刊2019年23期)

吕婷婷,安瑛,刘宇健,李好义,谭晶[10](2019)在《静电纺丝制备蛋清蛋白/聚氧化乙烯纳米纤维》一文中研究指出本研究采用去离子水为溶剂,以蛋清蛋白与聚氧化乙烯(PEO)混合进行静电纺丝制备纳米纤维,采用扫描电镜表征了蛋清蛋白/PEO纳米纤维的形貌特征,探究了溶液质量分数以及纺丝工艺参数对蛋清蛋白/PEO纤维形貌的影响,并采用元素分析测试表征了纤维的元素组成成分。实验结果表明,蛋清在质量分数20%~80%之间表现出可纺性,蛋清质量分数50%的纺丝溶液进行纺丝,在纺丝电压25kV、纺丝距离16cm、挤出速度0.2mL/h的条件下,可纺性最好,制备的纤维无珠串平均直径为389nm,且纳米纤维中11.02%为氮元素,说明蛋清中的蛋白质成功转化为了纳米纤维。蛋清蛋白具有生物友好、可降解、来源广泛等优点,本研究成功实现了蛋清蛋白纳米纤维绿色制造,为其在生物医药、电池催化等领域的应用提供了基础。(本文来源于《化工进展》期刊2019年12期)

纳米纤维论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

采用静电纺丝法和后煅烧法制备了一种镍铁合金纳米颗粒嵌入氮掺杂碳纳米纤维的催化剂材料。通过SEM、TEM、XRD和XPS等对催化剂的形貌和组成进行分析与表征。进一步通过电化学工作站的测试证明催化剂NiFe-N-CNF-2具有优越的OER性能(10 mA/cm~2的电流密度下过电势为0. 4 V),甚至可以媲美商业RuO_2催化剂。该方法为制备低成本和高活性析氧催化剂提供了新方法。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

纳米纤维论文参考文献

[1].张飒,王建江,赵芳,刘嘉玮.电纺Co掺杂碳纳米纤维的制备及其吸波性能[J].材料工程.2019

[2].刘江涛,姜志浩,张传玲.镍铁合金纳米颗粒嵌入氮掺杂碳纳米纤维高活性析氧催化剂的研究[J].现代化工.2019

[3].李伟刚,凤权,胡金燕,杨李燏,陈欢欢.再生纤维素基复合纳米纤维膜的制备及其应用[J].水处理技术.2019

[4].杨晓兵,赵磊,隋旭磊,孟令辉,王振波.基于磷钨酸功能化纳米纤维的超高质子/钒选择性的聚苯并咪唑膜在全钒液流电池中的应用[J].物理化学学报.2019

[5].吕婷婷,安瑛,李好义,刘宇健,焦志伟.静电纺动物蛋白纳米纤维研究进展[J].纺织学报.2019

[6].谢超,洪国辉,赵丽娜,杨伟强,王继库.石墨烯/聚吡咯纳米纤维超级电容器电极材料的制备及其电化学性能[J].应用化学.2019

[7].凡启光,庄建国.纳米纤维锂电池负极材料的制备及性能分析[J].棉纺织技术.2019

[8]..基于国产芳砜纶的复合纳米纤维膜研发成功[J].纺织科学研究.2019

[9].崔景淼.金属氧化物纳米纤维晶体管的制备及性能[J].农家参谋.2019

[10].吕婷婷,安瑛,刘宇健,李好义,谭晶.静电纺丝制备蛋清蛋白/聚氧化乙烯纳米纤维[J].化工进展.2019

论文知识图

在具有Y形纳米孔道AAO模板中化学气相...利用水热法制备片式花状AlOOH[178]丝素蛋白样品的XRD图不同丝素蛋白样品上神经干细胞迁移量:纳米流体中界面纳米层模型示意图乳糖酰基壳聚糖的合成线路图

标签:;  ;  ;  ;  ;  ;  ;  

纳米纤维论文_张飒,王建江,赵芳,刘嘉玮
下载Doc文档

猜你喜欢